А.И. Слободянюк Н.В. Козловский В.В. Барашков В.О. Богомолов

Республиканская физическая олимпиада 2011 года (заключительный этап)

Экспериментальный тур. <u>Решения задач</u>

Гомель 2011

Задача 9-1. «Вода и масло»

Часть 1. Сообщающиеся сосуды.

1.1 В сообщающихся высоты уровней жидкости в обоих коленах в состоянии равновесия равны, поэтому должно выполняться условие

$$h_{10} + k_1 l_1 = h_{20} + k_2 l_2 \,. \tag{1}$$

Из этого условия следует, что

$$l_2 = \frac{h_{10} - h_{20}}{k_2} + \frac{k_1}{k_2} l_1.$$
 (2)

1.2 В таблице 1 приведены результаты измерений длин столбиков воды в обеих трубках (проведены две серии измерений и объединены). График полученной зависимости показан на рисунке.

Таблица 1.

<i>l</i> ₁ , мм	l ₂ , мм
14	18
46	45
72	68
89	82
120	109
148	133
194	175
45	44
64	60
85	78
119	107
151	135
168	150
190	169

Коэффициент наклона прямой, рассчитанный по методу наименьших квадратов¹, оказался равным

$$a = 0,865 \pm 0,08 \tag{2}$$

В соответствии с формулой (1) он равен отношению коэффициентов $\frac{k_1}{k_2}$. Это значение будет использовано в дальнейших расчетах.

¹ Для учащихся 9 классов использование МНК не обязательно, вполне достаточно провестри графическую обработку результатов.

1.4 В состоянии равновесия суммарные давления жидкостей на нижнем уровне трубок будут равны, что выражается уравнением

$$\rho_0(h_{10} + k_1 l_1) = \rho_0(h_{20} + k_2 l_2) + k_2 \rho_1 \Delta l, \qquad (3)$$

здесь Δl - длина столбика масла.

Это уравнение легко преобразуется к виду, указанному в условии, если обе его части разделить на $k_2 \rho_0$:

$$\rho_0(h_{10} + k_1 l_1) = \rho_0(h_{20} + k_2 l_2) + k_2 \rho_1 \Delta l \implies (4)$$

 $\frac{k_1}{k_2}l_1 - l_2 = \frac{\rho_1}{\rho_0}\Delta l + \frac{h_{20} - h_{10}}{k_2}$

Теперь, если построить зависимость величины $z = \frac{k_1}{k_2} l_1 - l_2$

от высоты столбика масла Δl , то эта зависимость должна быть линейна, причем коэффициент наклона прямой равен отношению плотностей масла и воды.

1.5 Результаты проведенных измерений показаны в Таблице 2. График зависимости $z(\Delta l)$ показан на рисунке.

Таблица 2.

<i>l</i> ₁ , <i>мм</i>	l ₂ , мм	$\Delta l, MM$	Z, ММ
77	69	0	-2,40
100	44	52	42,50
115	27	83	72,48
135	6	126	110,78
150	-14	164	143,75
167	-32	194	176,46

Коэффициент наклона данного графика (рассчитанный по МНК) равен

$$a_1 = \frac{\rho_1}{\rho_0} = 0.91 \pm 0.03 \tag{5}$$

Следовательно, плотность масла равна

$$\rho_1 = a_1 \rho_0 = (0.91 \pm 0.03) \cdot 10^3 \frac{\kappa^2}{M^3}.$$
 (6)

Задание 9-2 Механический сканер

Задание 1. Для нахождения веса нагрузки предпочтительнее использовать метод, показанный на рисунке 4, т. к. из-за профиля бутылки нам невозможно уравнять силу F_1 , действующую на руку, и силу F_2 , действующую на динамометр. На рис.3 мы с большой погрешностью определяем ось вращения бутылки. При взвешивании бутылки на рис.4 силы, действующие на динамометр и руку, автоматически уравниваются из-за малости трения качения (при поднятии или опускании руки и динамометра показание динамометра не изменяются).

 $0,5F_T = (2,7\pm0,1) H$, $F_T = (5,4\pm0,2) H$ Весом линейки можно пренебречь.

Задание 2. Обмотаем линейку нитью с шагом около 0,3 см, а затем в обратном направлении намоткой нити прикрепим бутылку к линейке.

$$\mu = \frac{F_{Tp}}{F_T} = \frac{1,2 \pm 0,1}{5,4 \pm 0,2}, \qquad \mu = 0,22 \pm 0,03$$

Задание 3. Для построения графика распределения силы давления нагрузки вдоль оси ОХ поместим двойной лист бумаги (рис.1) между 245 и 246 страницами учебника. С шагом 0,5 см будем тянуть нить с помощью динамометра, располагая ее параллельно оси ОУ. Результаты измерений F_{тр1}(X) занесем в таблицу. Снимем нагрузку и повторим измерения. Результаты измерений F_{тр2}(X) занесем в таблицу.

Вычислим силу трения, обусловленную вкладом нагрузки $F_{TP1}(X) - F_{TP2}(X)$. Распределение нагрузки на опору

вычислим по формуле $N = \frac{F_{TP1}(x) - F_{TP2}(x)}{2\mu}$ (сила трения действует на верхнюю и

нижнюю поверхность нити) и результаты занесем в таблицу.

X ± 0,2	$F_{rp1}(x) \pm 0.05$	$F_{Tp2}(x)) \pm 0.05$	$(F_{Tp1} - F_{Tp2}) \pm 0,1$	$N = \frac{F_{Tp1}(x) - F_{Tp2}(x)}{2\mu}$
СМ	Н	Н	Н	Н
0,5	0,2	0,15	0,05	0,1
1	0,2	0,15	0,05	0,1
1,5	0,2	0,2	0	0
2	0,2	0,2	0	0
2,5	0,2	0,2	0	0
3	0,3	0,2	0,1	0,2
3,5	0,3	0,25	0,05	0,1
4	0,45	0,3	0,05	0,1
4,5	0,5	0,4	0,1	0,2
5	0,7	0,4	0,3	0,7
5,5	0,9	0,35	0,55	1,3
6	1,1	0,35	0,75	1,7
6,5	1,5	0,4	1,1	2,5
<u></u>	<u>1,6</u>	<u>0,35</u>	<u>1,25</u>	<u>2,8</u>
7,5	1,5	0,35	1,15	2,6
8	1,4	0,3	1,1	2,5
8,5	1,2	0,3	0,9	2,1
9	1	0,3	0,7	1,6
9,5	0,8	0,3	0,5	1,1
10	0,6	0,3	0,3	0,7
10,5	0,5	0,3	0,2	0,5
11	0,4	0,3	0,1	0,2
11,5	0,35	0,3	0,05	0,1
12	0,35	0,25	0,1	0,2
12,5	0,25	0,15	0,1	0,2
13	0,15	0,1	0,05	0,1
13,5	0,15	0,1	0,05	0,1
14	0,15	0,1	0,05	0,1
14,5	0,15	0,1	0,05	0,1
15	0,2	0,1	0,1	0,2
15,5	0,3	0,3	0	0
16	0,4	0,5	0,1	0,2
16,5	0,7	0,6	0,1	0,2

Для построения графика N(X) доверительными точками будем считать значения разности сил трения равные и большие погрешности $\Delta F_{TP} = 0,1 H$, что соответствует интервалу $4 c_M < \ell_2 < 13 c_M$

Задание 4.

- 1) Из графика N(X) видно, что максимум нагрузки на нижнюю часть опоры находится в интервале $6,5 \, cm < \Delta X < 7,5 \, cm$ и смещен от координаты соответствующей оси симметрии нагрузки $X_0 = \frac{6,5+9}{2} = 7,75 \, cm$. Причиной такого смещения максимума нагрузки является наличие крепления края листов бумаги между собой (наличие переплета). Причиной смещения максимума нагрузки может являться и наклон поверхности стола. В нашем эксперименте наклон стола вдоль оси ОХ отсутствовал (проверка осуществлялась с помощью отвеса).
- 2) Из-за деформации прогиба листов учебника распределение нагрузки, приложенной к верхней части опоры в интервале 6,5 $cm \le \Delta X_1 \le 9 cm$, приходится на опору 4 $cm < \Delta X_2 < 13 cm$.

Сила нормального давления на нить N складывается из части нагрузки Δmg и вертикальной проекции сил упругой деформации F_{ynp} листов бумаги, которые могут по величине превосходить Δmg . Интервал деформации листов бумаги $\Delta X_1 \approx 0,5$ см при протаскивании нити можно определить с помощью линейки. Если шаг измерений силы трения не совпадает с ΔX_1 , то суммарную нагрузку на единицу длины можно вычислить используя полученный график N(X). При подсчете суммарной силы $\sum N_i$ интервалы деформации не должны перекрываться и находиться на удалении друг от друга.

Определим суммарную нагрузку на единицу длины в верхней α и нижней части β опоры («линейное» давление):

$$\beta = \frac{\sum N_i}{\ell_2} = \frac{0, 2+0, 7+1, 3+1, 7+2, 5+2, 8+2, 6+2, 5+2, 1+...+0, 2}{13-4} = \frac{21}{9} = 2,33 \frac{H}{cm}$$
$$\alpha = \frac{F_T}{\ell_1} = \frac{5, 4 H}{(9-6,5) cm} = 2,16 \frac{H}{cm}, \quad \alpha \approx \beta$$

 $\ell_1 = 9 - 6, 5 = 2,5$ см — ширина линейки

$$\sum N'_{i} = \frac{\ell_{2}}{\ell_{1}} F_{T} = \frac{9}{2,5} 5, 4 = 19,44 \frac{H}{cM}$$
- теория
$$\sum N_{i} = 21 H - эксперимент$$

Если «шевелить», протягивая нить, нижнюю опору, то мы

получаем механическую модель гидравлического пресса.

На графике изображены зависимости:

звездочка - $F_{TP2}(X)$, точка - $F_{TP1}(X)$, треугольник - $F_{TP1}(X) - F_{TP2}(X)$

Задание 10-1. Стабилизация

Часть 1. Введение.

1.1 Для рассматриваемой цепи в любой момент времени справедливо уравнение (закон Ома):

$$U_0 = IR + U_C. \tag{1}$$

Если напряжение на конденсаторе достигает стационарного значения, то ток в цепи прекращается, поэтому при I = 0

$$U_C = U_0.$$

В начальный момент зарядки напряжение на конденсаторе равно нулю $U_c = 0$, поэтому в этот момент сила тока равна

(2)

$$I_0 = \frac{U_0}{R}.$$
(3)

Следовательно, скорость изменения напряжения на конденсаторе в этот момент рассчитывается по формуле

$$\Delta U_C = \frac{\Delta q}{C} = \frac{I_0 \Delta t}{C} \implies \left(\frac{\Delta U_C}{\Delta t}\right)_0 = \frac{I_0}{C} = \frac{U_0}{RC}.$$
(4)

В соответствии с предложенной в условии методикой определяем характерное время зарядки

$$\tau = \frac{\overline{U}_C}{\left(\frac{\Delta U_C}{\Delta t}\right)_0} = RC.$$
(5)

Часть 2. Электролитический (полярный) конденсатор.

2.1 Результаты измерений зависимостей напряжения на конденсаторе от времени при двух значениях напряжения U_0 ($U^{(4)}(t)$ при $U_0 = 4,0B$ и $U^{(2)}(t)$ при $U_0 = 2,0B$) представлены в Таблице 1. Графики этих зависимостей показаны на рисунке.

<i>t</i> , c	$U^{(4)}(t), MB$	$U^{(2)}(t), $ мВ	<i>t</i> , c	$U^{(4)}(t), \mathrm{MB}$	$U^{(2)}(t),$ мВ
5	180	60	200	2610	1110
10	260	100	205	2640	1130
15	380	130	210	2670	1140
20	470	170	215	2700	1160
25	560	210	220	2740	1170
30	660	240	225	2760	1190
35	760	280	230	2790	1210
40	830	320	235	2820	1220
45	920	350	240	2840	1230
50	1000	390	245	2870	1250
55	1090	420	250	2890	1260
60	1160	450	255	2920	1270
65	1230	480	260	2950	1290
70	1300	510	265	2970	1300
75	1380	540	270	2990	1310
80	1440	570	275	3020	1320
85	1510	600	280	3040	1340
90	1580	630	285	3050	1350
95	1640	660	290	3070	1360
100	1700	690	295	3100	1370
105	1770	710	300	3120	1380
110	1820	740	305	3140	1390
115	1870	760	310	3150	1400
120	1920	780	315	3170	1410
125	1980	810	320	3190	1420
130	2030	830	325	3200	1430
135	2080	850	330	3220	1440
140	2130	880	335	3230	1450
145	2180	900	340	3240	1460
150	2220	920	345	3260	1470
155	2280	940	350	3280	1480
160	2310	960	355	3290	1490
165	2360	980	360	3300	1500
170	2390	1000	365	3310	1500
175	2420	1020	370	3330	1510
180	2460	1040	375	3340	1520
185	2510	1060	380	3350	1530
190	2540	1070	385	3360	1540
195	2570	1090	390	3380	1540
200	2610	1110	395	3390	1550
			400	3400	1560

Таблица 1. Зарядка конденсатора.

2.2 Главная причина неравенства предельных значений напряжения на конденсаторе \overline{U}_C с установленными напряжениями U_0 - ток утечки конденсатора. Для подтверждения этого утверждения достаточно показать, что и в предельном режиме (по прошествии большого промежутка времени) достаточно провести измерения напряжения на резисторе – оно отлично от нуля, что свидетельствует о том, что ток в цепи продолжает идти. Так как напряжение на конденсаторе при этом не изменяется, то это есть ток утечки. Иными

словами, для правильного описания режимов работы цепи в эквивалентную схему параллельно конденсатору следует добавить резистор с сопротивлением равным сопротивлению конденсатора.

2.3 Для расчета сопротивления

конденсатора можно измерить установившиеся значения напряжений на резисторе и на конденсаторе. В этом случае (при отсутствии тока зарядки) выполняется соотношение (условия постоянства силы тока):

$$\frac{U_R}{R} = \frac{\overline{U}_C}{R_C} \implies R_C = R \frac{\overline{U}_C}{U_R}.$$
(6)

Проведенные измерения (после 1 часа зарядки) дали следующие значения²:

U_0, \mathbf{B}	\overline{U}_{C} , мВ	U_{R} , мВ	R_{C} , кОм
4,0	1848	102	540
2,0	3500	357	295

² Справедливости ради отметим, что на самом деле мы получаем сопротивление параллельно соединенных конденсатора и мультиметра (его сопротивление примерно равно 1,2 Мом, Поэтому реальное значение сопротивления конденсатора оказывается большим. Однако, в условии задачи оговорено, что мультиметр можно считать идеальным вольтметром, с бесконечно большим сопротивлением.

Важно (и неожиданно!), оказывается сопротивление конденсатора зависит от напряжения на нем: с ростом напряжения сопротивление падает («конденсатор течет сильнее»). Кроме того, даже в установившемся режиме сумма напряжений на конденсаторе и резисторе оказывается меньше начального установленного напряжения U_0 . Это связано с тем, что сопротивление делителя напряжений (потенциометра) оказывается сравнимым с сопротивлением подключенной цепи.

Для грубой оценки сопротивления конденсатора можно попытаться воспользоваться и данными снятыми с графиков зависимости напряжения на конденсаторе от времени, полагая, что суммарное напряжение не изменилось. Такие оценки дают следующие результаты: $(U^{(4)}(t)$ при $U_0 = 4,0B$ и $U^{(2)}(t)$ при $U_0 = 2,0B$)

для
$$U_0 = 4,0B$$
 $R_C = R \frac{U_C}{U_0 - U_R} = 30 \cdot \frac{3500}{4000 - 3500} \approx 210 \ \kappa Om$

для
$$U_0 = 2,0B$$
 $R_C = R \frac{U_C}{U_0 - U_R} = 30 \cdot \frac{1750}{2000 - 1750} \approx 210 \ \kappa OM$

При таком подходе получены заниженные оценки, кроме того не проявляются различия в сопротивлении конденсатора при разных напряжениях. Поэтому дополнительные измерения при большем времени зарядки необходимы!

2.4 По построенным графикам временных зависимостей можно определить примерные предельные значения напряжений на конденсаторах и характерные времена зарядки конденсатора при двух напряжениях источника. Такие построения показаны на рисунке, результаты представлены ниже:

$$\overline{U}^{(4)} \approx 3.5 B, \qquad \tau^{(4)} \approx 150 c$$

$$\overline{U}^{(2)} \approx 1.8 B, \qquad \tau^{(2)} \approx 200 c$$
(7)

Важно отметить, что характерные времена зарядки зависят от начального напряжения, что свидетельствует о зависимости сопротивления конденсатора от напряжения на нем!

2.5 Теоретический расчет характерных времен зарядки представляет собой достаточно громоздкую, но посильную задачу. Прежде всего, отметим, что упрощенный расчет этих времен (при условии постоянства напряжения на выходе потенциометра) дает принципиально неверный результат.

Действительно, в рассматриваемой цепи (в рамках сделанного приближении) при зарядке выполняются соотношения

$$\overline{U} = \frac{U_0 R_C}{R + R_C}, \quad I_0 = \frac{U_0}{R}, \tag{8}$$

из которых следует, что $\tau = \frac{C\overline{U}}{I_0} = \frac{CR_CR}{R+R_C} < RC \approx 120 c$. Хотя в действительности эти

времена оказываются большими, чем RC.

Следовательно, необходимо полностью и корректно рассчитывать начальные токи и установившиеся напряжения на конденсаторе в цепи, показанной на рисунке. Причем в начальный момент времени следует полагать, что $R_x = R$ и рассчитать силу тока I_1 , а в установившемся режиме $R_x = R + R_C$ и найти напряжение на R_C .

Результаты таких расчетов представлены в таблицах

	Ro=	100	Umax=	4,8		
	R=	30	Uo=	4		
	C=	4,00E-03	R1=	83,3		
Rc=	0				Rc=	300
Rx=	30				Rx=	330
Rob=	38,73				Rob=	83,2
Io=	0,124				Io=	0,058
I1=	0,091				I1=	0,012
					U lim=	3,49
					Ur lim=	0,35
		au =	153 c			

	Ro=	100	Umax=	4,8		
	R=	30	Uo=	2		
	C=	4,00E-03	R1=	41,7		
Rc=	0				Rc=	500
Rx=	30				Rx=	530
Rob=	75,78				Rob=	96,96
Io=	0,063				Io=	0,050
I1=	0,037				I1=	0,004
					Ulim=	1,80
					Ur lim=	0,11
		au =	196 c			

Полученные результаты совпадают с результатами измерений (как по временам зарядки, так и по предельным значениям).

Часть 3 Стабилитрон.

Схема для измерения вольтамперной характеристики стабилитрона очевидна. Результаты измерений и требуемый график приведены в таблице и на рисунке.

Ur	Ir	Ucm	Ur	Ir	Ucm
мВ	мкА	мВ	мВ	мкА	мВ
9	0,30	251	1043	34,77	1412
19	0,63	490	1125	37,50	1422
25	0,83	567	1188	39,60	1431
34	1,13	677	1277	42,57	1440
55	1,83	819	1351	45,03	1447
83	2,77	931	1458	48,60	1457
114	3,80	1002	1646	54,87	1472
161	5,37	1087	1807	60,23	1483
246	8,20	1174	1994	66,47	1495
334	11,13	1232	2130	71,00	1503
366	12,20	1248	2180	72,67	1506
453	15,10	1286	2260	75,33	1511
511	17,03	1305	2330	77,67	1514
639	21,30	1342	2440	81,33	1519
702	23,40	1356	2560	85,33	1525
800	26,67	1375	2670	89,00	1530
993	33,10	1405	2790	93,00	1534
1043	34,77	1412	2940	98,00	1540

Таблица 2. ВАХ стабилитрона

Важно отметить, что при токах больших 40 мкА напряжение на стабилитроне остается практически постоянным, что и оправдывает название этого прибора!

Часть 4. Конденсатор и стабилитрон.

4.1 Результаты измерения временных зависимостей напряжения на конденсаторе для схемы, показанной на рисунке, и соответствующие графики приведены в таблице 3 и на рисунке.

Ta	аблица	3.	3a	рядка	c	па	раллелы	ным	стабил	итр	оном.
			~ • •		•						0110111

	4,0 B	2,0 B
t,c	Ud, мВ	Ud, мВ
5	150	68
10	246	101
15	348	142
20	450	180
25	548	221
30	641	257
35	724	295
40	811	330
45	899	363
50	976	399
55	1057	431
60	1138	464
65	1196	495
70	1259	526
75	1317	558
80	1364	584
85	1403	614
90	1437	641
95	1458	667
100	1477	695
105	1481	721
110	1486	746
115	1489	769
120	1492	792
125	1494	816
130	1495	838
135	1495	860
140	1496	881
145	1496	902
150	1496	923
155	1496	941
160	1496	960
165	1496	978
170	1497	994
175	1497	1012
180	1497	1026

Пока напряжение на конденсаторе не достигло напряжения стабилизации, стабилитрон практически не влияет на процесс зарядки (для сравнения приведена кривая зарядки без стабилитрона). После того, как напряжение достигло 1,5 В зарядка прекращается – весь ток протекает через стабилитрон. При начальном напряжении 2,0 В стабилитрон практически не влияет на процесс зарядки, так как не достигается значения напряжения стабилизации.

4.2 При последовательном подключении стабилитрона временная характеристика зарядки становится иной.

Зарядка с последовательно подключенным стабилитроном

Предельное напряжение уменьшается на напряжение стабилизации стабилитрона (т.е на 1,5 В). Так как стабилитрон вносит дополнительное сопротивление, возрастает также время зарядки конденсатора.

Задание 10-2. «Странные» законы движения.

Часть 1. Перетекание.

1.1 Результаты измерений зависимости высоты столбика масла x в верхней трубке от времени даны в Таблице 1. Там же приведены и результаты необходимых в дальнейшем расчетов.

Для расчета скорости использовалась предложенная в условии схема.

Отметим, что высота столбика воды в нижней практически такая же, как и масла в верхней. График полученной зависимости показан на рисунке.

Таблица 1. Перетекание масла.

<i>t</i> , <i>c</i>	х, мм	v, мм / с	$\ln(L-x)$
37	0		5,159
99	5	0,136	5,130
147	15	0,227	5,069
165	20	0,256	5,037
186	25	0,250	5,004
205	30	0,303	4,970
219	35	0,345	4,934
234	40	0,313	4,898
251	45	0,303	4,860
267	50	0,303	4,820
284	55	0,294	4,779
301	60	0,286	4,736
319	65	0,250	4,691
341	70	0,227	4,644
363	75	0,213	4,595
388	80	0,204	4,543
412	85	0,208	4,489
436	90	0,182	4,431
467	95	0,169	4,369
495	100	0,169	4,304
526	105	0,154	4,234
560	110	0,147	4,159
594	115	0,132	4,078
636	120	0,118	3,989
679	125	0,115	3,892
723	130	0,115	3,784
766	135	0,106	3,664
817	140	0,088	3,526
880	145	0,081	3,367
941	150		3,178

1.2 Для объяснения наблюдаемого эффекта необходимо предположить, что нижний край верхней пластиковой трубки находится вверху нижнего сосуда, а верхний край нижней трубки внизу верхнего сосуда. В этом случае по первой трубке масло будет перетекать вверх, а по второй – вода вниз (см. рисунок).

1.3 Покажем, что скорость перетекания жидкостей линейно зависит от высоты столбика масла (и равной ей высоты столбика воды) x. Обозначим давление жидкости на верхнем срезе трубки в верхнем сосуде P_0 , тогда давление в нижней области этой трубки будет равно

$$P = P_0 + \rho g x + \rho_0 g (L - x), \qquad (1)$$

где ρ_0 , ρ - плотности воды и масла, соответственно, *L* - высота сосуда и примерно равная ей длина трубки (различием в них и толщиной пробки пренебрегаем).

Аналогично для нижнего сосуда: *P*₁ - давление в его верхней части, тогда давление у дна

$$P = P_1 + \rho g (L - x) + \rho_0 g x.$$
 (2)

Разумно предположить, что скорость течения жидкостей в трубках пропорциональна разности давлений на ее концах³. Тогда для скорости течения масла (вверх!) можно записать уравнение

$$P_1 - P_0 - \rho g L = \beta v, \qquad (3)$$

где β - некоторый коэффициент пропорциональности, зависящий от геометрических размеров трубки и вязкости масса, ρgL - гидростатическое давление масла в трубке. Аналогично для движения воды (вниз – поэтому гидростатическое давление воды в трубке войдет с другим знаком!) справедливо уравнение

$$(P_0 + \rho g x + \rho_0 g (L - x)) - (P_1 + \rho g (L - x) + \rho_0 g x) + \rho_0 g l = \beta_0 v.$$
(4)

Сложив уравнения (3)-(4), и после приведения подобных членов, получим

$$+\begin{cases} P_{1} - P_{0} - \rho gL = \beta v \\ (P_{0} + \rho gx + \rho_{0} g(L - x)) - (P_{1} + \rho g(L - x) + \rho_{0} gx) + \rho_{0} gL = \beta_{0} v \\ \Rightarrow \\ (\rho_{0} - \rho)g(L - x) = (\beta_{0} + \beta)v \end{cases}$$
(5)

Отсюда следует, что скорость движения жидкостей в трубках пропорциональна величине (L - x), то есть высоте столба воды в верхнем сосуде

$$v = \frac{(\rho_0 - \rho)g}{(\beta_0 + \beta)} (L - x).$$
(6)

Следовательно, этой же величине пропорциональна и скорость движения границ масла и воды в обоих сосудах.

³ Это утверждение называют законом Пуазейля.

1.4 На графике показана зависимость скорости движения границы от координаты x, рассчитанная по экспериментальным данным.

На начальном этапе, пока процесс перетекания не установился (когда случайным образом влияют пузырьки воздуха, капельки воды и масла в трубках) скорость даже возрастает.

Этот же факт можно видеть и на начальном этапе графика закона движения.

дальнейшем B скорость движения практически линейно зависит ОТ координаты, что подтверждает проделанные теоретические расчеты. Параметры линейной зависимости

$$v = kx + b , \tag{7}$$

рассчитанные по МНК оказываются равными

$$k = -(2,4 \pm 0,2) \cdot 10^{-3} c^{-1}$$

$$b = (0,41 \pm 0,02) \ MM/c$$
(8)

Заметим, что уравнение (7) можно записать в виде $v = k_1(L - x),$

где $k_1 = -k$, $L = -\frac{b}{k} \approx 175$ мм, что, во-первых, совпадает с видом уравнения (6); во-

вторых, дает значение длины трубки *L* близкое к ее реальной длине.

Дополнение (не обязательное для участников олимпиады).

Более строго и надежно закон движения можно обосновать на основании уравнения (6). Если скорость изменения координаты х подчиняется уравнению

$$\frac{dx}{dt} = k(L - x), \qquad (9)$$

т закон движения имеет вид

$$x = L(1 - \exp(-kt)). \tag{10}$$

Его *удобно* представить логарифмической шкале

$$\ln(L-x) = \ln L - kt \, .$$

График этой зависимости показан на рисунке.

Как видно, в этом случае разброс точек значительно меньше (так избежали процедуры как мы

Так, например, коэффициент наклона оказывается равным $k = -(2,24 \pm 0,03) \cdot 10^{-3} c^{-1}$, что на порядок точнее, чем приведенное ранее значение.

Часть 2. Намокание.

. *MM*

2.1 Результаты измерений⁴ зависимости высоты подъема мокрой границы *х* от времени *t* приведены в Таблице 1. Рядом показан график полученной зависимости.

		$(x-x_0)^2,$	\sqrt{t} ,
х, мм	t,c	\mathcal{MM}^2	$c^{1/2}$
15	0	0	0,00
20	16	36	4,00
25	53	121	7,28
30	91	256	9,54
35	155	441	12,45
40	212	676	14,56
45	319	961	17,86
50	418	1296	20,45
55	552	1681	23,49
65	900	2601	30,00

Таблица 1. Намокание бумаги.

х

$$\beta xv = f \,. \tag{1}$$

Из этого уравнения следует

$$\beta xv = f \implies x \frac{\Delta x}{\Delta t} = \frac{f}{\beta} \implies x \Delta x = \frac{f}{\beta} \Delta t.$$
 (2)

⁴ В реальности измерялось время до достижения заданной величины, поэтому в таблице 1 шаг координаты постоянен, а шаг времени заметно изменяется. Поэтому, строго говоря, и следовало обрабатывать зависимость t(x). Однако, в данном случае нам важно проверить только вид зависимости, поэтому обработка обратной функции x(t) более наглядна и приводит практически к тем же результатам.

Если просуммировать⁵ полученное уравнение, получим

$$(x - x_0)^2 = At, (3)$$

где A - неизвестная постоянная, выражающаяся через столь же неизвестные параметры β, f . Для проверки данной зависимости можно воспользоваться двумя равноценными способами, построив зависимость либо $(x - x_0)^2 = At$, либо $x = x_0 + \sqrt{At}$.

На графиках представлены обе зависимости. Как видно, они достаточно близки к линейным, что подтверждает сделанное предположение и проведенные теоретический анализ. Значения требуемого параметра оказались в пределах погрешности совпадающими

$$A = (3,0\pm0,1)\frac{MM^2}{c}.$$

Отметим, что, не смотря на кажущееся подобие законов движения в двух частях данного задания, они оказались различными.

Справедливости ради следует сказать, что с определенной точностью процесс намокания бумаги также может быть аппроксимирован экспоненциальной зависимостью.

⁵ Проинтегрировать!

Задание 11-2. Зеркало Френеля.

Часть 1. Теоретическая.

На рисунке показан ход лучей, при попадании на выпуклую линзу. Жирными стрелками указаны положительные направления отсчета соответствующих смещений. Пусть расстояние от точки падения луча до главной оптической оси равно y. Обозначим угол между главной оптической осью и направлением на точку падения α . Из рисунка следует, что в приближении малых углов (когда $tg \alpha \approx \alpha$)

$$\alpha = \frac{y}{R} \,. \tag{1}$$

Тогда в соответствии с законом отражения света отраженный луч отклонится на угол 2α . Считая этот угол малым (то есть, полагая, что $tg 2\alpha \approx 2\alpha$) найдем, что смещение отраженного луча равно

$$\Delta x_1 = 2\alpha L_1 = \frac{2L_1}{R_1} y \,. \tag{2}$$

Для смещения преломленного луча, учитывая подобие треугольников, можно записать пропорцию

$$\frac{y}{F} = \frac{\Delta x_2}{L_2},\tag{3}$$

из которой следует, что (с учетом направления отклонения)

$$\Delta x_2 = -\frac{L_2}{F} y \,. \tag{4}$$

Не сложно показать, что приведенные формулы справедливы и для рассеивающей линзы, только в этом случае радиус кривизны и фокусное расстояние следует считать отрицательными.

Формулы (2) и (4) дают метод измерения радиусов кривизны поверхностей линзы и ее фокусного расстояния. Так по коэффициенту наклона графика функции $\Delta x_1(y)$ можно найти

$$\Delta x_1 = \frac{2L_1}{R_1} y = K_1 y \quad \Rightarrow \quad R_1 = \frac{2L_1}{K_1}.$$
(5)

Аналогично по коэффициенту наклона графика $\Delta x_2(y)$ определяется фокусное расстояние

$$\Delta x_1 = -\frac{L_2}{F} y = K_0 y \quad \Rightarrow \quad F = -\frac{L_2}{K_0} \,. \tag{6}$$

2.1 Результаты измерения смещения отраженного Δx_1 и преломленного Δx_2 лучей в зависимости от смещения линзы *у* для обеих сторон приведены в Таблице 1. В наших измерениях расстояния от линзы до экрана были равны

$$L_1 = (510 \pm 2)$$
 MM; $L_2 = (400 \pm 2)$ MM;

Сторона 1		Сторона 2			
у, мм	$\Delta x_1, MM$	Δx_2 , мм	у, мм	Δx_1 , мм	Δx_2 , мм
-9	-113	42			
-8	-95	36	-9	-90	38
-7	-85	31	-8	-83	35
-6	-76	27	-7	-67	30
-5	-64	23	-6	-62	25
-4	-55	19	-5	-50	20
-3	-45	15	-4	-43	15
-2	-34	10	-3	-30	11
-1	-23	5	-2	-26	7
0	-12	3	-1	-14	4
1	-8	0	0	0	0
2	8	-6	1	7	-5
3	20	-10	2	10	-8
4	30	-15	3	21	-14
5	40	-19	4	29	-17
6	52	-24	5	36	-22
7	63	-28	6	44	-25
8	75	-33	7	57	-30
9	83	-36	8	65	-35
			9	77	-39
<i>K</i> =	10,58	-4,24		9,04	-4,25
$\Delta K =$	0,17	0,08		0,24	0,07

Таблица 1. Собирающая линза.

По данным Таблицы 1 построим графики соответствующих зависимостей. В соответствии с формулами (2), (4) эти зависимости линейны (смещения от начала отсчета легко объяснимы неточностью установки начального отсчета – центр линзы не совпадает с началом отсчета). На рисунке представлены графики полученных зависимостей.

Коэффициенты наклона графиков и их погрешности, рассчитанные по МНК, приведены в нижних строках таблицы 1. По этим коэффициентам с помощью формулы (2) определяем радиусы кривизны обеих поверхностей линз: для первой поверхности:

$$R_{1} = \frac{2L_{1}}{K_{1}} = \frac{2 \cdot 51}{10,58} = 9,64 \ cm; \quad \Delta R_{1} = R_{1} \frac{\Delta K_{1}}{K_{1}} = 0,15 \ cm;$$

$$R_{1} = (9,64 \pm 0,15) \ cm; \tag{7}$$

для второй поверхности:

$$R_{2} = \frac{2L_{1}}{K_{1}} = \frac{2 \cdot 51}{9,04} = 11,28 \ cm; \quad \Delta R_{1} = R_{1} \frac{\Delta K_{1}}{K_{1}} = 0,28 \ cm$$
$$R_{1} = (11,3 \pm 0,3) \ cm; \tag{8}$$

Наклоны графиков зависимостей $\Delta x_2(y)$ в пределах погрешности совпадают, поэтому для определения фокусного расстояния можно использовать любое значение коэффициента наклона

$$F = -\frac{L_2}{K_0} = \frac{40}{4,25} = 9,41 \, cm; \quad \Delta F = F \, \frac{\Delta K_0}{K_0} = 0,16 \, cm.$$

$$F = (9,41 \pm 0,16) \, cm; \tag{9}$$

Отметим, что относительные погрешности измерения расстояний заметно превышают погрешности определения коэффициентов наклона, поэтому при расчете погрешностей погрешности радиусов кривизны и фокусного расстояния не учитывались.

Теперь с помощью формулы для фокусного расстояния линзы рассчитаем показатель преломления стекла, из которого изготовлена линза:

$$\frac{1}{F} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right) \implies -\frac{K_0}{L_2} = (n-1)\left(\frac{K_1}{2L_1} + \frac{K_2}{2L_1}\right) \implies (n-1) = -\frac{2L_1}{L_2}\frac{K_0}{K_1 + K_2}$$
$$(n-1) = -\frac{2L_1}{L_2}\frac{K_0}{K_1 + K_2} = \frac{2\cdot51}{40}\frac{4,25}{10,58 + 9,64} = 0,54$$
$$\Delta n = (n-1)\sqrt{\left(\frac{\Delta K_0}{K_0}\right)^2 + \left(\frac{\Delta K_1 + \Delta K_2}{K_1 + K_2}\right)^2} = 0,54\sqrt{\left(\frac{0,07}{4,25}\right)^2 + \left(\frac{0,17 + 0,24}{10,58 + 9,64}\right)^2} = 0,02$$
$$n = 1,54 \pm 0,02$$
(10)

2.4 Измерение характеристик второй линзы проводится аналогично. Результаты измерений зависимостей отклонения лучей от смещения линзы представлены в Таблице 2.

сторона 1			сторона 2				
у, мм	Δx_1 , мм	$\Delta x_2, MM$	у, мм	$\Delta x_1, MM$	$\Delta x_2, MM$		
-9	81	-35	-9	82	-37		
-8	68	-32	-8	75	-34		
-7	61	-27	-7	64	-30		
-6	50	-24	-6	54	-26		
-5	41	-20	-5	44	-22		
-4	32	-16	-4	35	-18		
-3	21	-12	-3	26	-13		
-2	11	-7	-2	17	-10		
-1	0	-2	-1	10	-6		
0	-6	1	0	0	-2		
1	-17	5	1	-9	2		
2	-26	8	2	-20	7		
3	-37	12	3	-33	12		
4	-46	17	4	-39	14		
5	-55	23	5	-48	18		
6	-66	26	6	-57	23		
7	-74	29	7	-65	26		
8	-84	33	8	-75	31		
<i>K</i> =	-9,63	4,07		-9,29	4,03		
$\Delta K =$	0,10	0,07		0,13	0,05		

Таблица 2. Рассеивающая линза.

Ниже показаны графики измеренных зависимостей – обратите внимание, что наклоны графиков изменились на противоположные по сравнению с аналогичными графиками для собирающей линзы.

Расчеты также проводятся аналогично:

для первой поверхности:

$$R_{1} = \frac{2L_{1}}{K_{1}} = \frac{2 \cdot 51}{-9,63} = -10,59 \ cm; \quad \Delta R_{1} = R_{1} \frac{\Delta K_{1}}{K_{1}} = 0,11 \ cm;$$

$$R_{1} = (-10,59 \pm 0,11) \ cm; \qquad (11)$$

для второй поверхности:

$$R_{2} = \frac{2L_{1}}{K_{1}} = \frac{2 \cdot 51}{-9,29} = -10,97 \ cm; \quad \Delta R_{1} = R_{1} \frac{\Delta K_{1}}{K_{1}} = 0,15 \ cm;$$

$$R_{1} = (-10,97 \pm 0,15) \ cm; \qquad (12)$$

Для фокусного расстояния

$$F = -\frac{L_2}{K_0} = -\frac{40}{4,05} = -9,88 \, c_{\mathcal{M}}; \quad \Delta F = F \frac{\Delta K_0}{K_0} = 0,12 \, c_{\mathcal{M}}.$$

$$F = (-9,88 \pm 0,12) \, c_{\mathcal{M}}; \qquad (13)$$

Показатель преломления:

$$(n-1) = -\frac{2L_1}{L_2} \frac{K_0}{K_1 + K_2} = -\frac{2 \cdot 51}{40} \frac{4,05}{9,63 + 9,29} = 0,546$$

$$\Delta n = (n-1) \sqrt{\left(\frac{\Delta K_0}{K_0}\right)^2 + \left(\frac{\Delta K_1 + \Delta K_2}{K_1 + K_2}\right)^2} = 0,54 \sqrt{\left(\frac{0,05}{4,05}\right)^2 + \left(\frac{0,10 + 0,13}{9,63 + 9,29}\right)^2} = 0,02$$

$$n = 1,55 \pm 0,02$$
(14)

Часть 3. Зеркало Френеля.

Для уменьшения размытости отраженного пятна расстояние от зеркала до экрана было уменьшено до $L_1 = 10 \, c_M$. Результаты измерений зависимости отклонения луча от смещения зеркала приведены в Таблице 3. Там же даны результаты расчетов, необходимые для дальнейшей обработки результатов.

у, мм	$\Delta x, MM$	sin <i>q</i>	1/ у, мм	d, мкм
-9	-94	-0,0656	-0,111	10,0
-8	-80	-0,0625	-0,125	10,5
-7	-63	-0,0592	-0,143	11,1
-6	-50	-0,0537	-0,167	12,2
-5	-39	-0,0466	-0,200	14,1
-4	-35	-0,0378	-0,250	17,3
-3	-27	-0,0290	-0,333	22,6
-2	-27	-0,0193	-0,500	33,9
-1	-20	-0,0098	-1,000	66,8
1	20	0,0098	1,000	66,8
2	33	0,0190	0,500	34,5
3	33	0,0285	0,333	23,0
4	43	0,0367	0,250	17,8
5	50	0,0447	0,200	14,6
6	65	0,0503	0,167	13,0
7	80	0,0547	0,143	12,0
8	92	0,0589	0,125	11,1

Таблица	3.	3e	ркало	Φ	ренеля.
---------	----	----	-------	---	---------

На Графике 1 показана полученная зависимость.

Полученная зависимость далека от линейной. Основной причиной является то, что в данном случае углы отклонения не могут считаться малыми, поэтому предпочтительнее перейти к синусам углов отклонения, которые рассчитываются по формуле

$$\sin \varphi = \frac{y}{\sqrt{y^2 + L^2}} \,.$$

Зависимость синуса угла отклонения от смещения зеркала показана на графике 2. На этой кривой (достаточно гладкой и монотонной) можно выделить линейный участок. Его коэффициент наклона $K \approx 0,0094$ дает возможность оценить «радиус кривизны» зеркала Френеля:

(15)

$$\sin \varphi \approx 2 \sin \alpha = \frac{2}{R} y \implies R = \frac{2}{K} = \frac{2}{0,0094} \approx 20 \, cm \tag{15}$$

Более интересным является вопрос об описании зеркала Френеля как дифракционной решетки с переменным шагом. Для определения периода решетки следует воспользоваться формулой (учитывая, что мы наблюдаем только первый дифракционный максимум)

$$d\sin\varphi = \lambda \implies d = \frac{\lambda}{\sin\varphi},$$
 (16)

где $\lambda = 0,655$ *мкм* - длина волны излучения лазера. На графике 3 показанная рассчитанная по экспериментальным данным зависимость периода решетки от координаты. Данная

зависимости периода решетки от величины обратной смещению $d(y^{-1})$, которая близка к линейной (График 4). Для большей наглядности левую половину графика мы отразили вертикально.

Таким образом, мы показали, что период решетки обратно пропорционален расстоянию до центра зеркала. Такой вид зависимости объясняется строением зеркала. Как сказано в условии, зеркало состоит из концентрических отражающих колец. Если квадрат диаметра кольца пропорционален его номеру

$$D_n^2 = Cn, \qquad (17)$$

то края этих колец будут совпадать с границами зон Френеля, поэтому такая система отражает свет подобно сферическому зеркалу. Если формула (17) справедлива для исследуемого зеркала, то расстояния между соседними кольцами (то есть период решетки) находится по формулам

$$D_{n+1}^2 - D_n^2 = C \implies (D_{n+1} - D_n)(D_{n+1} + D_n) = C \implies$$

$$d = D_{n+1} - D_n \approx \frac{C}{2D} \qquad (18)$$

Что и объясняет полученные экспериментальные данные.